Applied Hierarchical Modeling in Ecology Analysis of Distribution Abundance and Species Richness in R and BUGS

Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS, Volume Two: Dynamic and Advanced Models provides a synthesis of the state-of-the-art in hierarchical models for plant and animal distribution, also focusing on the complex and more advanced models currently available. The book explains all procedures in the context of hierarchical models that represent a unified approach to ecological research, thus taking the reader from design, through data collection, and into analyses using a very powerful way of synthesizing data. Makes ecological modeling accessible for people who are struggling to use complex or advanced modeling programs Synthesizes current ecological models and explains how they are inter-connected Contains examples throughout the book, walking the reading through scenarios with both real and simulated data Presents an ideal resource for ecologists working in R, an open source version of S known for its exceptional ecology analyses, and in BUGS for more flexible Bayesian analyses

Produk Detail:

  • Author : Marc Kery
  • Publisher : Academic Press
  • Pages : 820 pages
  • ISBN : 0128097272
  • Rating : 4/5 from 21 reviews
CLICK HERE TO GET THIS BOOKApplied Hierarchical Modeling in Ecology Analysis of Distribution Abundance and Species Richness in R and BUGS

Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS

Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS
  • Author : Marc Kery,J. Andrew Royle
  • Publisher : Academic Press
  • Release : 10 October 2020
GET THIS BOOKApplied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS

Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS, Volume Two: Dynamic and Advanced Models provides a synthesis of the state-of-the-art in hierarchical models for plant and animal distribution, also focusing on the complex and more advanced models currently available. The book explains all procedures in the context of hierarchical models that represent a unified approach to ecological research, thus taking the reader from design, through data collection, and into analyses using a

Hierarchical Modeling and Inference in Ecology

Hierarchical Modeling and Inference in Ecology
  • Author : J. Andrew Royle,Robert M. Dorazio
  • Publisher : Elsevier
  • Release : 15 October 2008
GET THIS BOOKHierarchical Modeling and Inference in Ecology

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of

Introduction to Hierarchical Bayesian Modeling for Ecological Data

Introduction to Hierarchical Bayesian Modeling for Ecological Data
  • Author : Eric Parent,Etienne Rivot
  • Publisher : CRC Press
  • Release : 21 August 2012
GET THIS BOOKIntroduction to Hierarchical Bayesian Modeling for Ecological Data

Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually

Bayesian Population Analysis Using WinBUGS

Bayesian Population Analysis Using WinBUGS
  • Author : Marc Kéry,Michael Schaub
  • Publisher : Academic Press
  • Release : 20 January 2021
GET THIS BOOKBayesian Population Analysis Using WinBUGS

Bayesian statistics has exploded into biology and its sub-disciplines, such as ecology, over the past decade. The free software program WinBUGS, and its open-source sister OpenBugs, is currently the only flexible and general-purpose program available with which the average ecologist can conduct standard and non-standard Bayesian statistics. Comprehensive and richly commented examples illustrate a wide range of models that are most relevant to the research of a modern population ecologist All WinBUGS/OpenBUGS analyses are completely integrated in software R

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan
  • Author : Franzi Korner-Nievergelt,Tobias Roth,Stefanie von Felten,Jérôme Guélat,Bettina Almasi,Pius Korner-Nievergelt
  • Publisher : Academic Press
  • Release : 04 April 2015
GET THIS BOOKBayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces

Introduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists
  • Author : Marc Kery
  • Publisher : Academic Press
  • Release : 19 July 2010
GET THIS BOOKIntroduction to WinBUGS for Ecologists

Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most

Hierarchical Modeling and Analysis for Spatial Data

Hierarchical Modeling and Analysis for Spatial Data
  • Author : Sudipto Banerjee
  • Publisher : CRC Press
  • Release : 17 December 2003
GET THIS BOOKHierarchical Modeling and Analysis for Spatial Data

Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,

Occupancy Estimation and Modeling

Occupancy Estimation and Modeling
  • Author : Darryl I. MacKenzie
  • Publisher : Academic Press
  • Release : 20 January 2021
GET THIS BOOKOccupancy Estimation and Modeling

Occupancy in ecological investigations; Fundamental principles of statistical inference; Single-species, single-season occupancy models; Single-species, single-season models with heterogeneous detection probabilities; Design of single-season occupancy studies; Single-species, multiple-season occupancy models; Occupancy data for multiple species: species interactions; Occupancy in community-level studies; Future directions.

Spatial Capture-Recapture

Spatial Capture-Recapture
  • Author : J. Andrew Royle,Richard B. Chandler,Rahel Sollmann,Beth Gardner
  • Publisher : Academic Press
  • Release : 27 August 2013
GET THIS BOOKSpatial Capture-Recapture

Spatial Capture-Recapture provides a comprehensive how-to manual with detailed examples of spatial capture-recapture models based on current technology and knowledge. Spatial Capture-Recapture provides you with an extensive step-by-step analysis of many data sets using different software implementations. The authors' approach is practical – it embraces Bayesian and classical inference strategies to give the reader different options to get the job done. In addition, Spatial Capture-Recapture provides data sets, sample code and computing scripts in an R package. Comprehensive reference on revolutionary

Bayesian Analysis for Population Ecology

Bayesian Analysis for Population Ecology
  • Author : Ruth King,Byron Morgan,Olivier Gimenez,Steve Brooks
  • Publisher : CRC Press
  • Release : 30 October 2009
GET THIS BOOKBayesian Analysis for Population Ecology

Novel Statistical Tools for Conserving and Managing PopulationsBy gathering information on key demographic parameters, scientists can often predict how populations will develop in the future and relate these parameters to external influences, such as global warming. Because of their ability to easily incorporate random effects, fit state-space mode

Bayesian Models

Bayesian Models
  • Author : N. Thompson Hobbs,Mevin B. Hooten
  • Publisher : Princeton University Press
  • Release : 04 August 2015
GET THIS BOOKBayesian Models

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with

Habitat Suitability and Distribution Models

Habitat Suitability and Distribution Models
  • Author : Antoine Guisan,Wilfried Thuiller,Niklaus E. Zimmermann
  • Publisher : Cambridge University Press
  • Release : 30 September 2017
GET THIS BOOKHabitat Suitability and Distribution Models

This book introduces the key stages of niche-based habitat suitability model building, evaluation and prediction required for understanding and predicting future patterns of species and biodiversity. Beginning with the main theory behind ecological niches and species distributions, the book proceeds through all major steps of model building, from conceptualization and model training to model evaluation and spatio-temporal predictions. Extensive examples using R support graduate students and researchers in quantifying ecological niches and predicting species distributions with their own data, and

Handbook of Discrete-Valued Time Series

Handbook of Discrete-Valued Time Series
  • Author : Richard A. Davis,Scott H. Holan,Robert Lund,Nalini Ravishanker
  • Publisher : CRC Press
  • Release : 06 January 2016
GET THIS BOOKHandbook of Discrete-Valued Time Series

Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who