External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid

This book seeks to comprehensively cover recent progress in computational fluid dynamics and nonlinear science and its applications to MHD and FHD nanofluid flow and heat transfer. The book will be a valuable reference source to researchers in various fields, including materials science, nanotechnology, mathematics, physics, information science, engineering and medicine, seeing to understand the impact of external magnetic fields on the hydrothermal behavior of nanofluids in order to solve a wide variety of theoretical and practical problems. Readers will gain a full understanding of the fundamentals in new numerical and analytical methods in MHD (Magnetohydrodynamics) Includes complete coverage of governing equations in which nanofluid is used as working fluid, and where magnetic fields are applied to nanofluids A single-source reference covering recent progress in computational fluid dynamics and nonlinear science, and its applications to MHD and FHD nanofluid flow and heat transfer

Produk Detail:

  • Author : Mohsen Sheikholeslami
  • Publisher : William Andrew
  • Pages : 354 pages
  • ISBN : 0323431771
  • Rating : 4/5 from 21 reviews
CLICK HERE TO GET THIS BOOKExternal Magnetic Field Effects on Hydrothermal Treatment of Nanofluid

External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid

External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid
  • Author : Mohsen Sheikholeslami,Davood Domairry Ganji
  • Publisher : William Andrew
  • Release : 08 March 2016
GET THIS BOOKExternal Magnetic Field Effects on Hydrothermal Treatment of Nanofluid

This book seeks to comprehensively cover recent progress in computational fluid dynamics and nonlinear science and its applications to MHD and FHD nanofluid flow and heat transfer. The book will be a valuable reference source to researchers in various fields, including materials science, nanotechnology, mathematics, physics, information science, engineering and medicine, seeing to understand the impact of external magnetic fields on the hydrothermal behavior of nanofluids in order to solve a wide variety of theoretical and practical problems. Readers will

Applications of Nanofluid for Heat Transfer Enhancement

Applications of Nanofluid for Heat Transfer Enhancement
  • Author : Mohsen Sheikholeslami,Davood Domairry Ganji
  • Publisher : William Andrew
  • Release : 26 February 2017
GET THIS BOOKApplications of Nanofluid for Heat Transfer Enhancement

Applications of Nanofluid for Heat Transfer Enhancement explores recent progress in computational fluid dynamic and nonlinear science and its applications to nanofluid flow and heat transfer. The opening chapters explain governing equations and then move on to discussions of free and forced convection heat transfers of nanofluids. Next, the effect of nanofluid in the presence of an electric field, magnetic field, and thermal radiation are investigated, with final sections devoted to nanofluid flow in porous media and application of nanofluid

Applications of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer

Applications of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer
  • Author : Mohsen Sheikholeslami,Davood Domairry Ganji
  • Publisher : Elsevier
  • Release : 02 January 2018
GET THIS BOOKApplications of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer

Application of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer applies semi-analytical methods to solve a range of engineering problems. After various methods are introduced, their application in nanofluid flow and heat transfer, magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, and nanofluid flow in porous media within several examples are explored. This is a valuable reference resource for materials scientists and engineers that will help familiarize them with a wide range of semi-analytical methods and how they are used in

Heat Transfer Enhancement Using Nanofluid Flow in Microchannels

Heat Transfer Enhancement Using Nanofluid Flow in Microchannels
  • Author : Davood Domairry Ganji,Amir Malvandi
  • Publisher : William Andrew
  • Release : 11 June 2016
GET THIS BOOKHeat Transfer Enhancement Using Nanofluid Flow in Microchannels

Heat Transfer Enhancement Using Nanofluid Flow in Microchannels: Simulation of Heat and Mass Transfer focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels. Economic and environmental incentives have increased efforts to reduce energy consumption. Heat transfer enhancement, augmentation, or intensification are the terms that many scientists employ in their efforts in energy consumption reduction. These can be divided into (a) active techniques which require external

Applications of Nanofluid Transportation and Heat Transfer Simulation

Applications of Nanofluid Transportation and Heat Transfer Simulation
  • Author : Sheikholeslami, Mohsen
  • Publisher : IGI Global
  • Release : 28 December 2018
GET THIS BOOKApplications of Nanofluid Transportation and Heat Transfer Simulation

Different numerical and analytical methods have been employed to find the solution of governing equations for nanofluid flow and heat transfer. Applications of Nanofluid Transportation and Heat Transfer Simulation provides emerging research exploring the theoretical and practical aspects and applications of heat and nanofluid transfer. With practical examples and proposed methodology, it features coverage on a broad range of topics such as nanoparticles, electric fields, and hydrothermal behavior, making it an ideal reference source for engineers, researchers, graduate students, professionals,

Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method

Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method
  • Author : Mohsen Sheikholeslami,Davood Domairry Ganji
  • Publisher : Academic Press
  • Release : 27 February 2015
GET THIS BOOKHydrothermal Analysis in Engineering Using Control Volume Finite Element Method

Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer
  • Author : Mohsen Sheikholeslami
  • Publisher : Elsevier
  • Release : 14 September 2018
GET THIS BOOKApplication of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer discusses this powerful numerical method that uses the advantages of both finite volume and finite element methods for the simulation of multi-physics problems in complex geometries, along with its applications in heat transfer and nanofluid flow. The book applies these methods to solve various applications of nanofluid in heat transfer enhancement. Topics covered include magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, melting heat transfer, and

Convection in Ferro-Nanofluids: Experiments and Theory

Convection in Ferro-Nanofluids: Experiments and Theory
  • Author : Aleksandra A. Bozhko,Sergey A. Suslov
  • Publisher : Springer
  • Release : 25 August 2018
GET THIS BOOKConvection in Ferro-Nanofluids: Experiments and Theory

This book covers the experimental and theoretical study of convection in non-isothermal ferro-nanofluids (FNFs). Since FNFs are not transparent and magnetic fields are very sensitive to the shape of the boundary between magnetic and nonmagnetic media, special flow visualization techniques based on the use of thermo-sensitive liquid crystal films, infrared cameras, as well as local and integral temperature sensors are discussed in the book. This book considers several major configurations of convective chambers and the applied magnetic field. For each

Differential Transformation Method for Mechanical Engineering Problems

Differential Transformation Method for Mechanical Engineering Problems
  • Author : Mohammad Hatami,Davood Domairry Ganji,Mohsen Sheikholeslami
  • Publisher : Academic Press
  • Release : 17 November 2016
GET THIS BOOKDifferential Transformation Method for Mechanical Engineering Problems

Differential Transformation Method for Mechanical Engineering Problems focuses on applying DTM to a range of mechanical engineering applications. The authors modify traditional DTM to produce two additional methods, multi-step differential transformation method (Ms-DTM) and the hybrid differential transformation method and finite difference method (Hybrid DTM-FDM). It is then demonstrated how these can be a suitable series solution for engineering and physical problems, such as the motion of a spherical particle, nanofluid flow and heat transfer, and micropolar fluid flow and

Micromixers

Micromixers
  • Author : Nam-Trung Nguyen
  • Publisher : William Andrew
  • Release : 17 September 2011
GET THIS BOOKMicromixers

The ability to mix minute quantities of fluids is critical in a range of recent and emerging techniques in engineering, chemistry and life sciences, with applications as diverse as inkjet printing, pharmaceutical manufacturing, specialty and hazardous chemical manufacturing, DNA analysis and disease diagnosis. The multidisciplinary nature of this field – intersecting engineering, physics, chemistry, biology, microtechnology and biotechnology – means that the community of engineers and scientists now engaged in developing microfluidic devices has entered the field from a variety of different

Nanofluid in Heat Exchangers for Mechanical Systems

Nanofluid in Heat Exchangers for Mechanical Systems
  • Author : Zhixiong Li,Ahmad Shafee,Iskander Tlili,M. Jafaryar
  • Publisher : Elsevier
  • Release : 09 April 2020
GET THIS BOOKNanofluid in Heat Exchangers for Mechanical Systems

Nanofluid in Heat Exchanges for Mechanical Systems: Numerical Simulation shows how the finite volume method is used to simulate various applications of heat exchanges. Heat transfer enhancement methods are introduced in detail, along with a hydrothermal analysis and second law approaches for heat exchanges. The melting process in heat exchanges is also covered, as is the influence of variable magnetic fields on the performance of heat exchange. This is an important reference source for materials scientists and mechanical engineers who

Nanofluid Heat and Mass Transfer in Engineering Problems

Nanofluid Heat and Mass Transfer in Engineering Problems
  • Author : Mohsen Sheikholeslami Kandelousi
  • Publisher : BoD – Books on Demand
  • Release : 15 March 2017
GET THIS BOOKNanofluid Heat and Mass Transfer in Engineering Problems

In the present book, nanofluid heat and mass transfer in engineering problems are investigated. The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment heat transfer. Newly, innovative nanometer-sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer-sized particle dispersion are called "nanofluids." At first, nanofluid heat and mass transfer over a stretching sheet are provided with various boundary conditions.

Electric Field

Electric Field
  • Author : Mohsen Sheikholeslami Kandelousi
  • Publisher : BoD – Books on Demand
  • Release : 23 May 2018
GET THIS BOOKElectric Field

In the present book, various applications of electric field are introduced in health and biology like treating cancer and cell sorting and in engineering and technological applications like enhancing the heat transfer, colloidal hydrodynamics and stability, and lithography. Electric field is defined as a force field arising from the electric charges. Depending on the nature of the material (the ability to polarize) and the inherent or attained surface charges, the response of the electric field varies.

Magnetic Properties of Fine Particles

Magnetic Properties of Fine Particles
  • Author : J.L. Dormann,D. Fiorani
  • Publisher : Elsevier
  • Release : 02 December 2012
GET THIS BOOKMagnetic Properties of Fine Particles

The aim of this volume is to advance the understanding of the fundamental properties of fine magnetic particles and to discuss the latest developments from both the theoretical and experimental viewpoints, with special emphasis being placed on the applications in different branches of science and technology. All aspects of fine magnetic particles are covered in the 46 papers. The topics are remarkably interdisciplinary covering theory, materials preparation, structural characterization, optical and electrical properties, magnetic properties studied by different techniques and applications.