# Fixed Point Theory and Graph Theory

Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets. Introduces both metric fixed point and graph theory in terms of their disparate foundations and common application environments Provides a unique integration of otherwise disparate domains that aids both students seeking to understand either area and researchers interested in establishing an integrated research approach Emphasizes solution methods for fixed points in non-linear problems such as variational inequalities, split feasibility, and hierarchical variational inequality problems that is particularly appropriate for engineering and core science applications

Produk Detail:

• Author : Monther Alfuraidan
• Pages : 442 pages
• ISBN : 0128043652
• Rating : 4/5 from 21 reviews

## Fixed Point Theory and Graph Theory

• Author : Monther Alfuraidan,Qamrul Ansari
• Release : 20 June 2016

Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances

## Fixed Point Theory and Related Topics

• Author : Hsien-ChungWu
• Publisher : MDPI
• Release : 13 March 2020

Fixed point theory arose from the Banach contraction principle and has been studied for a long time. Its application mostly relies on the existence of solutions to mathematical problems that are formulated from economics and engineering. After the existence of the solutions is guaranteed, the numerical methodology will be established to obtain the approximated solution. Fixed points of function depend heavily on the considered spaces that are defined using the intuitive axioms. In particular, variant metrics spaces are proposed, like

## Advances in Metric Fixed Point Theory and Applications

• Author : Yeol Je Cho,Mohamed Jleli,Mohammad Mursaleen,Bessem Samet,Calogero Vetro
• Publisher : Springer Nature
• Release : 05 June 2021

This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of

## Handbook of Metric Fixed Point Theory

• Author : W.A. Kirk,B. Sims
• Publisher : Springer Science & Business Media
• Release : 17 April 2013

Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the

## Fixed Point Theory

• Author : V.I. Istratescu
• Publisher : Springer Science & Business Media
• Release : 30 November 2001

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will find the final G. K. Chesterton, The Scandal of Father question. Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly

## Advanced Topics in Mathematical Analysis

• Author : Michael Ruzhansky,Hemen Dutta
• Publisher : CRC Press
• Release : 08 January 2019

Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.

## Ordered Sets

• Author : Bernd Schröder
• Publisher : Birkhäuser
• Release : 11 May 2016

An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.

## Linear and Multilinear Algebra and Function Spaces

• Author : A. Bourhim,J. Mashreghi,L. Oubbi,Z. Abdelali
• Publisher : American Mathematical Soc.
• Release : 05 May 2020

This volume contains the proceedings of the International Conference on Algebra and Related Topics, held from July 2–5, 2018, at Mohammed V University, Rabat, Morocco. Linear reserver problems demand the characterization of linear maps between algebras that leave invariant certain properties or certain subsets or relations. One of the most intractable unsolved problems is Kaplansky's conjecture: every surjective unital invertibility preserving linear map between two semisimple Banach algebras is a Jordan homomorphism. Recently, there has been an upsurge of interest in nonlinear

## The Seventh European Conference on Combinatorics, Graph Theory and Applications

• Author : Jaroslav Nešetřil,Marco Pellegrini
• Publisher : Springer Science & Business Media
• Release : 18 January 2014

In the tradition of EuroComb'01 (Barcelona), Eurocomb'03 (Prague), EuroComb'05 (Berlin), Eurocomb'07 (Seville), Eurocomb'09 (Bordeaux), and Eurocomb'11 (Budapest), this volume covers recent advances in combinatorics and graph theory including applications in other areas of mathematics, computer science and engineering. Topics include, but are not limited to: Algebraic combinatorics, combinatorial geometry, combinatorial number theory, combinatorial optimization, designs and configurations, enumerative combinatorics, extremal combinatorics, ordered sets, random methods, topological combinatorics.

## Differential Equations

• Author : Terry E. Moschandreou
• Publisher : BoD – Books on Demand
• Release : 23 May 2018

The editor has incorporated contributions from a diverse group of leading researchers in the field of differential equations. This book aims to provide an overview of the current knowledge in the field of differential equations. The main subject areas are divided into general theory and applications. These include fixed point approach to solution existence of differential equations, existence theory of differential equations of arbitrary order, topological methods in the theory of ordinary differential equations, impulsive fractional differential equations with finite

## Fixed Point Theory, Variational Analysis, and Optimization

• Author : Saleh Abdullah R. Al-Mezel,Falleh Rajallah M. Al-Solamy,Qamrul Hasan Ansari
• Publisher : CRC Press
• Release : 03 June 2014

Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis—fixed point theory, variational inequalities, and vector optimization—but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions involving differentiable or directionally differentiable functions. This essential reference supplies both an introduction to the field and a guideline to the literature, progressing from basic concepts to the latest developments. Packed with detailed

## Fixed Point Theory and Its Applications

• Author : Robert F. Brown
• Publisher : American Mathematical Soc.
• Release : 27 January 1988

Fixed point theory touches on many areas of mathematics, such as general topology, algebraic topology, nonlinear functional analysis, and ordinary and partial differential equations and serves as a useful tool in applied mathematics. This book represents the proceedings of an informal three-day seminar held during the International Congress of Mathematicians in Berkeley in 1986. Bringing together topologists and analysts concerned with the study of fixed points of continuous functions, the seminar provided a forum for presentation of recent developments in several

## Fixed Point Theorems and Applications

• Author : Vittorino Pata
• Publisher : Springer Nature
• Release : 22 September 2019

This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two main parts. The first, which is more theoretical, develops the main abstract theorems on the existence and uniqueness of fixed points of maps. In turn, the second part focuses on applications, covering a large variety of significant results ranging from ordinary differential equations in Banach spaces, to partial differential equations, operator theory, functional analysis, measure theory,

## An Introduction to Nonlinear Analysis and Fixed Point Theory

• Author : Hemant Kumar Pathak
• Publisher : Springer
• Release : 19 May 2018

This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its