Nanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals. Provides the necessary components for the systematic study of the structure-property relationship in ferroelectric thin film materials using case studies in energy applications Written by leading experts in the research areas of piezoelectrics, electrocalorics, ferroelectric dielectrics (especially in capacitive energy storage), ferroelectric domains, and ferroelectric-Si technology Includes a well balanced mix of theoretical design and simulation, materials processing and integration, and dedicated characterization methods of the involved nanostructures

Produk Detail:

  • Author : Jun Ouyang
  • Publisher : Elsevier
  • Pages : 386 pages
  • ISBN : 0128138572
  • Rating : 4/5 from 21 reviews
CLICK HERE TO GET THIS BOOKNanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications
  • Author : Jun Ouyang
  • Publisher : Elsevier
  • Release : 06 June 2019
GET THIS BOOKNanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their

Ferroelectric Materials for Energy Applications

Ferroelectric Materials for Energy Applications
  • Author : Haitao Huang,James F. Scott
  • Publisher : John Wiley & Sons
  • Release : 04 January 2019
GET THIS BOOKFerroelectric Materials for Energy Applications

Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future

Nanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications
  • Author : Jun Ouyang
  • Publisher : Elsevier
  • Release : 15 July 2019
GET THIS BOOKNanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and the Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during

Thin Films for Energy Harvesting, Conversion, and Storage

Thin Films for Energy Harvesting, Conversion, and Storage
  • Author : Zhong Chen,Yuxin Tang,Xin Zhao
  • Publisher : MDPI
  • Release : 07 November 2019
GET THIS BOOKThin Films for Energy Harvesting, Conversion, and Storage

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research

Ferroelectricity in Doped Hafnium Oxide

Ferroelectricity in Doped Hafnium Oxide
  • Author : Uwe Schroeder,Cheol Seong Hwang,Hiroshi Funakubo
  • Publisher : Woodhead Publishing
  • Release : 27 March 2019
GET THIS BOOKFerroelectricity in Doped Hafnium Oxide

Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and its implementation into semiconductor devices, including a comparison to standard ferroelectric materials. The ferroelectric and field-induced ferroelectric properties of HfO2-based films are considered promising for various applications, including non-volatile memories, negative capacitance field-effect-transistors, energy storage, harvesting, and solid-state cooling. Fundamentals of ferroelectric and piezoelectric properties, HfO2 processes, and the impact of dopants on ferroelectric properties are also

Metal Oxide-Based Thin Film Structures

Metal Oxide-Based Thin Film Structures
  • Author : Nini Pryds,Vincenzo Esposito
  • Publisher : Elsevier
  • Release : 07 September 2017
GET THIS BOOKMetal Oxide-Based Thin Film Structures

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In

Ferroelectric Thin Films

Ferroelectric Thin Films
  • Author : Masanori Okuyama,Yoshihiro Ishibashi
  • Publisher : Springer Science & Business Media
  • Release : 22 February 2005
GET THIS BOOKFerroelectric Thin Films

Ferroelectric thin films continue to attract much attention due to their developing applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. The contributing authors are acknowledged experts in the field.

FIB Nanostructures

FIB Nanostructures
  • Author : Zhiming M. Wang
  • Publisher : Springer Science & Business Media
  • Release : 04 January 2014
GET THIS BOOKFIB Nanostructures

FIB Nanostructures reviews a range of methods, including milling, etching, deposition, and implantation, applied to manipulate structures at the nanoscale. Focused Ion Beam (FIB) is an important tool for manipulating the structure of materials at the nanoscale, and substantially extends the range of possible applications of nanofabrication. FIB techniques are widely used in the semiconductor industry and in materials research for deposition and ablation, including the fabrication of nanostructures such as nanowires, nanotubes, nanoneedles, graphene sheets, quantum dots, etc. The

Ferroelectric Memories

Ferroelectric Memories
  • Author : James F. Scott
  • Publisher : Springer Science & Business Media
  • Release : 29 June 2013
GET THIS BOOKFerroelectric Memories

This is the first comprehensive book on ferroelectric memories which contains chapters on device design, processing, testing, and device physics, as well as on breakdown, leakage currents, switching mechanisms, and fatigue. State-of-the-art device designs are included and illustrated among the books many figures. More than 500 up-to-date references and 76 problems make it useful as a research reference for physicists, engineers and students.

Applications of Laser Ablation

Applications of Laser Ablation
  • Author : Dongfang Yang
  • Publisher : BoD – Books on Demand
  • Release : 21 December 2016
GET THIS BOOKApplications of Laser Ablation

Laser ablation refers to the phenomenon in which a low wavelength and short pulse (ns-fs) duration of laser beam irradiates the surface of a target to induce instant local vaporization of the target material generating a plasma plume consisting of photons, electrons, ions, atoms, molecules, clusters, and liquid or solid particles. This book covers various aspects of using laser ablation phenomenon for material processing including laser ablation applied for the deposition of thin films, for the synthesis of nanomaterials, and

Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides
  • Author : Gertjan Koster,M Huijben,Guus Rijnders
  • Publisher : Elsevier
  • Release : 14 May 2015
GET THIS BOOKEpitaxial Growth of Complex Metal Oxides

The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes. Part One reviews the key techniques involved in the epitaxial growth of complex metal